Ascorbic acid (vitamin C, C6H8O6) is a diprotic acid (Ka1 = 7.9 × 10-5, Ka2 = 1.6 × 10-12). Calculate the pH of a solution that contains 2.1 mg acid per mL water. (Assume that only the first ionization is important in determining pH.)

Respuesta :

Answer: The pH of the solution is 3.03

Explanation:

We are given:

Concentration of acid = 2.1 mg/mL

Converting this into mol/L, we use the conversion factor:

1 g = 1000 mg

1 L = 1000 mL

Molar mass of ascorbic acid = 176.12 g/mol

Converting the concentration, we get:

[tex]\Rightarrow (\frac{2.1mg}{1mL})\times (\frac{1000mL}{1L})\times (\frac{1g}{1000mg})\times (\frac{1mol}{176.12g})=0.0119mol/L[/tex]

The chemical equation for the first dissociation of oxalic acid follows:

               [tex]H_2C_6H_6O_6(aq.)\rightleftharpoons H^+(aq.)+HC_6H_6O_6^-(aq.)[/tex]

Initial:            0.0119

At eqllm:       0.0119-x               x                 x

The expression of first equilibrium constant equation follows:

[tex]Ka_1=\frac{[H^+][HC_6H_6O_6^{-}]}{[H_2C_6H_6O_6]}[/tex]

We know that:

[tex]Ka_1\text{ for }H_2C_6H_6O_6=7.9\times 10^{-5}[/tex]

Putting values in above equation, we get:

[tex]7.9\times 10^{-5}=\frac{x\times x}{(0.0119-x)}\\\\x=-0.001,0.00093[/tex]

Neglecting the negative value of 'x', because concentration cannot be negative.

To calculate the pH of the solution, we use the equation:

[tex]pH=-\log[H^+][/tex]

We are given:

[tex][H^+]=0.00093M[/tex]

Putting values in above equation, we get:

[tex]pH=-\log(0.00093)\\\\pH=3.03[/tex]

Hence, the pH of the solution is 3.03