Answer: [tex]7.87\times 10^{-3}M[/tex]
Explanation:
[tex]CH_3NH_2+H_2O\rightleftharpoons CH_3NH_3^++OH^-[/tex]
cM 0 0
[tex]c-c\alpha[/tex] [tex]c\alpha[/tex] [tex]c\alpha[/tex]
So dissociation constant will be:
[tex]K_b=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]
Give c= 0.125 M and [tex]\alpha[/tex] = ?
[tex]K_b=5.25\times 10^{-4}[/tex]
Putting in the values we get:
[tex]5.25\times 10^{-4}=\frac{(0.125\times \alpha)^2}{(0.125-0.125\times \alpha)}[/tex]
[tex](\alpha)=0.063[/tex]
[tex][OH^-]=c\times \alpha[/tex]
[tex][OH^-]=0.125\times 0.063=7.87\times 10^{-3}M[/tex]
Thus hydroxide ion concentration of a 0.125 molar aqueous solution of methylamine is [tex]7.87\times 10^{-3}M[/tex]