Respuesta :

[tex]1-(cosx)^4[/tex] value is [tex]2sin^4-sin^4x[/tex] . Correct option is D) [tex]2sin^4-sin^4x[/tex] .

Step-by-step explanation:

Here we have , expression to evaluate:

[tex]1-(cosx)^4[/tex]

[tex]1-((cosx)^2)^2[/tex]

[tex]1-(1-(sinx)^2)^2[/tex]

We know that , [tex]sin^2x = 1-cos^2x[/tex] , putting value in equation [tex]1-(1-(sinx)^2)^2[/tex]

[tex]1-(1+sin^4x-2sin^4)[/tex]

[tex]1-1-sin^4x+2sin^4[/tex]

[tex]-sin^4x+2sin^4[/tex]

[tex]2sin^4-sin^4x[/tex]

Therefore , [tex]1-(cosx)^4[/tex] value is [tex]2sin^4-sin^4x[/tex] . Correct option is D) [tex]2sin^4-sin^4x[/tex]