The rectangle below has an area of x^2−4x−12, squared, minus, 4, x, minus, 12 square meters and a length of x+2x+2 x+2 x, plus, 2 meters. What expression represents the width of the rectangle?

Respuesta :

Answer:

[tex]W=(x-6)\ m[/tex]

Step-by-step explanation:

we know that

The area of rectangle is given by the formula

[tex]A=LW[/tex]

we have

[tex]A=(x^2-4x-12)\ m^2[/tex]

[tex]L=(x+2)\ m[/tex]

substitute

[tex]x^2-4x-12=(x+2)W[/tex]

Solve the quadratic equation of the left side

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^2-4x-12=0[/tex]  

so

[tex]a=1\\b=-4\\c=-12[/tex]

substitute in the formula

[tex]x=\frac{-(-4)\pm\sqrt{-4^{2}-4(1)(-12)}} {2(1)}[/tex]

[tex]x=\frac{4\pm\sqrt{64}} {2}[/tex]

[tex]x=\frac{4\pm8} {2}[/tex]

[tex]x=\frac{4+8} {2}=6[/tex]

[tex]x=\frac{4-8} {2}=-2[/tex]

therefore

[tex]x^2-4x-12=(x+2)(x-6)[/tex]  

substitute in the formula of area

[tex](x+2)(x-6)=(x+2)W[/tex]

solve for W

simplify

[tex]W=(x-6)\ m[/tex]