Answer: The equilibrium concentration of hydrogen sulfide is 23.7 M
Explanation:
For the given chemical equation:
[tex]2H_2(g)+S_2(g)\rightleftharpoons 2H_2S(g)[/tex]
The expression of [tex]K_{c}[/tex] for above equation follows:
[tex]K_{c}=\frac{[H_2S]^2}{[H_2]^2[S_2]}[/tex]
We are given:
[tex]K_{c}=1.30\times 10^{10}[/tex]
[tex][H_2]_{eq}=0.00400M[/tex]
[tex][S_2]_{eq}=0.00270M[/tex]
Putting values in above expression, we get:
[tex]1.30\times 10^{10}=\frac{[H_2S]^2}{(0.00400)^2\times 0.00270}[/tex]
[tex][H_2S]_{eq}=23.7,-23.7[/tex]
Neglecting the negative value of 'x' because concentration cannot be negative
Hence, the equilibrium concentration of hydrogen sulfide is 23.7 M