Respuesta :

Option C: [tex]12\sqrt{2} \ ft[/tex] is the length of BC

Explanation:

Given that the triangle ABC

The length of [tex]AC=12 \ ft[/tex], [tex]m\angle B=45^{\circ}[/tex]

We need to determine the length of BC

Length of BC:

The length of BC can be determined using the trigonometric ratios.

[tex]sin \theta=\frac{opp}{hyp}[/tex]

Substituting [tex]\theta=45[/tex] , [tex]Opp=BC=12[/tex] and [tex]hyp=BC[/tex], we get,

[tex]sin \ 45=\frac{12}{BC}[/tex]

   [tex]BC=\frac{12}{sin \ 45}[/tex]

Simplifying the values, we get,

[tex]BC=\frac{12}{\frac{1}{\sqrt{2}}}[/tex]

Dividing, we get,

[tex]BC=12\sqrt{2}[/tex]

Thus, the value of BC is [tex]12\sqrt{2} \ ft[/tex]

Hence, Option C is the correct answer.

Answer:

C

Step-by-step explanation:

sinB = AC/BC

sin(45) = 12/BC

1/sqrt(2) = 12/BC

BC = 12 ÷ 1/sqrt(2)

BC = 12sqrt(2)

sqrt: square root