line segment AB has endpoints A (7.5, 4.2) and B (2.3 ,5.4). Find the coordinates of the point that divides the line segment directed from A to B in the ratio of 1:3.

Respuesta :

Answer:

(6.2,  4.5)

Step-by-step explanation:

This can be solved using section formula, shown below:

[tex]x=\frac{mx_2+nx_1}{m+n}[/tex]

and

[tex]y=\frac{my_2+ny_1}{m+n}[/tex]

Where m and n are the ratio segmentation. Hence,

m = 1

n = 3

The points of x_1, x_2, y_1, and y_2 are given point respectively.

A(7.5, 4.2)

B(2.3, 5.4)

Thus, we have:

[tex]x=\frac{mx_2+nx_1}{m+n}\\x=\frac{(1)(2.3)+(3)(7.5)}{1+3}\\x=6.2[/tex]

and

[tex]y=\frac{my_2+ny_1}{m+n}\\y=\frac{(1)(5.4)+(3)(4.2)}{1+3}\\y=4.5[/tex]

The coordinates are  (6.2,  4.5)