contestada

A 26-tooth pinion rotating at a uniform 1800 rpm meshes with a 55-tooth gear in a spur gear reducer. Both pinion and gear are manufactured to a quality level of 10. The transmitted tangential load is 22 kN. Conditions are such that Km = 1.7. The teeth are standard 20-degree, full-depth. The module is 5 and the face width 62 mm. Determine the bending stress when the mesh is at the highest point of single tooth contact.

Respuesta :

Answer:

The bending stress of the face tooth is  [tex]\sigma _{bg} = 502.82 MPa[/tex]

Explanation:

From the question we are told that

        The number of tooth of the pinion is  [tex]N_t = 26 \ tooth[/tex]

         The velocity of rotation is given as [tex]\omega_p = 1800 rpm[/tex]

         The number of tooth is of the gear is  [tex]N_g = 55 \ tooth[/tex]

        The quality level is [tex]Q_r = 10[/tex]

          The transmitted tangential load is [tex]F_T = 22\ kN[/tex] = [tex]22 KN * \frac{1000N}{1KN} = 22*10^3 N[/tex]

                                                                    [tex]k_m = 1.7[/tex]

        The angle of the teeth is  [tex]\theta_t = 20^o[/tex]

         The module is  [tex]M= 5[/tex]

         The face width is [tex]W_f = 62mm[/tex]

The diameter of the pinion is mathematically represented as

                [tex]d_p = M * N_t[/tex]

Substituting the values

                [tex]d_p = 5 *26[/tex]

                    [tex]= 130 mm = \frac{130}{1000} = 0.130m[/tex]

The pitch line velocity is mathematically represented as

                     [tex]V_t = \frac{d_p }{2} \frac{2 \pi \omega_p}{60}[/tex]

Substituting values

                          [tex]= \frac{0.130}{2} * \frac{2 * 3.142 * 1800 }{60}[/tex]

                          [tex]= 12.25\ m/s[/tex]

Generally the dynamic factor is mathematically represented as

                      [tex]K_v = [\frac{A}{A +\sqrt{200V_t} } ]^B[/tex]

Now B is a constant that is mathematically represented as

                [tex]B = \frac{(12 -Q_r )^{2/3}}{4}[/tex]

substituting values

                  [tex]= \frac{(12- 10 )^{2/3}}{4}[/tex]

                  [tex]=0.3968[/tex]

A is also a constant that is mathematically represented as

              [tex]A = 50 + 56(1 -B)[/tex]

Substituting values

             [tex]= 50 +56 (1- 0.3968)[/tex]

             [tex]= 83.779[/tex]

Substituting these value into the equation for dynamic factor we have

           [tex]K_v = [\frac{83.779}{83.779 + \sqrt{200 * 12.25} } ]^{0.3968}[/tex]

                [tex]= 0.831[/tex]

The geometric bending factor for a 20° profile from table

"AGMA Bending Geometry Factor J for 20°, Full -Depth Teeth with HPSTC Loading , Table 2-9"                

That corresponds to 55 tooth gear meshing with 26 pinion is

                   [tex]J_g = 0.41[/tex]

the diameter pitch can be mathematically represented as

              [tex]p_d = \frac{1}{M}[/tex]

Substituting values

            [tex]p_d = \frac{1}{5}[/tex]

                [tex]=0.2mm^{-1}[/tex]

The mathematically representation for gear tooth bending stress in the teeth face is as follows

          [tex]\sigma_{bg} = \frac{F_T \cdot p_d }{W_f * J_g}\frac{K_a K_{dt} }{K_v} K_s K_B K_t ----(1)[/tex]

Where [tex]W_t[/tex] is the tangential load

            [tex]W_f[/tex] is the face width

            [tex]K_a[/tex] is the application factor  this is obtained from table "Application Factors, Table 12-17 " and the value  is  [tex]K_a[/tex]  = 1

            [tex]K_{dt}[/tex] is the load distributed factor

            [tex]K_s[/tex] is the size factor

             [tex]K_B[/tex] is the rim thickness factor which is obtained for M which has a value  1

           [tex]K_t[/tex] is the idler

Substituting values into equation 1

     [tex]\sigma_{bg} = \frac{22*10^3 *0.2}{62 * 0.41} * \frac{1 * 1.7 }{0.831} * 1 *1 *1.42[/tex]

            [tex]= 502.82 N/mm^2[/tex]

            [tex]= 502.82 * 1000 * \frac{N}{m^2}[/tex]

           [tex]= 502.82 MPa[/tex]