Suppose water is added to a tank at 10 gal / min , but leakes out at the rate of 0.2 gal / min for each gallon in the tank . What is the smllest capacity the tank can have if the pocess is to continue indefinitely ?

Respuesta :

Answer:

50 gallon

Step-by-step explanation:

We are given that

[tex]\frac{dV_{in}}{dt}=10 gal/min[/tex]

Let V(in gallon) be the present volume of tank.

[tex]\frac{dV_{out}}{dt}=0.2 V gal/min[/tex]

We have to find the smallest capacity  the tank can have if the process is to continue indefinitely.

According to question

[tex]\frac{dV}{dt}[/tex]=Incoming volume-outgoing volume

[tex]\frac{dV}{dt}=10-0.2 V=-(\frac{1}{5}V-10)=-(\frac{V-50}{5})[/tex]

[tex]\frac{5dV}{V-50}=-dt[/tex]

Integrating on both sides

[tex]\int \frac{5dV}{V-50}=-\int dt[/tex]

[tex]5ln(V-50)=-t+ln C[/tex]

By using the formula

[tex]\int \frac{dx}{x}=ln x+C[/tex]

[tex]ln(V-50)=\frac{1}{5}(-t+ln C)[/tex]

[tex]ln(V-50)=-\frac{1}{5}t+\frac{1}{5} ln C[/tex]

[tex]ln(V-50)=-\frac{1}{5} t+lnC^{\frac{1}{5}}[/tex]

[tex] ln(V-50)=-\frac{1}{5}t+ln C'[/tex]

Where [tex]ln C'=ln C^{\frac{1}{5}}[/tex]

[tex] ln(V-50)-ln C'=-\frac{1}{5} t[/tex]

[tex]ln\frac{V-50}{C'}=-\frac{1}{5}[/tex]

Using the formula

[tex] ln m-ln n=ln\frac{m}{n}[/tex]

[tex]\frac{V-50}{C'}=e^{-\frac{1}{5}t}[/tex]

[tex]V-50=C'e^{-\frac{1}{5}t}[/tex]

Substitute [tex]t=\infty[/tex]

[tex]V-50=0[/tex]

[tex]V=50[/tex]

Hence, the smallest capacity the tank can have if the process is to continue indefinitely=50 gallon