During the period from 1790 to 1920​, a​ country's population​ P(t) (t in​ years) grew from 4.1 million to 110.1 million. Throughout this​ period, P(t) remained close to the solution of the initial value problem:

(dP/dt) = (0.03142) P - (0.0001485) P², P(0) = 3.9

(a) What 1930 population does this logistic equation predict?
(b) What limiting population does it predict?

Respuesta :

Answer:

(a) 128 million

(b) The limiting population is 211.6 million

Step-by-step explanation:

Ordinary  Differential Equation (ODE)

It has been found a country's population P(t) (t in years from 1790) is modeled by the ODE:

[tex]\displaystyle \frac{dP(t)}{dt}=0.03142P - 0.0001485 P^2[/tex]

With an initial value of P(0)=3.9. Note this value differs from the 4.1 million originally suggested.

This is a variable separable differential equation that can be rewritten as

[tex]\displaystyle \frac{dP}{0.03142P - 0.0001485 P^2}=dt[/tex]

Integrating

[tex]\displaystyle \int \frac{dP}{0.03142P - 0.0001485 P^2}=\int dt[/tex]

The right-side integral is (for a constant A)

[tex]\int dt=t+A[/tex]

Let's compute the left-hand integral

[tex]\displaystyle I=\int \frac{dP}{0.03142P - 0.0001485 P^2}[/tex]

Factor the denominator

[tex]\displaystyle I=\int \frac{dP}{(\frac{0.03142}{P} - 0.0001485) P^2}[/tex]

Substitute

[tex]\displaystyle u=\frac{0.03142}{P} - 0.0001485[/tex]

[tex]\displaystyle du=-\frac{0.03142}{P^2}dP[/tex]

Substitute into the integral

[tex]\displaystyle I=\frac{1}{-0.03142 }\int \frac{du}{u}[/tex]

Solving

[tex]\displaystyle I=\frac{1}{-0.03142 }ln(u)+C[/tex]

Undo substitution

[tex]\displaystyle I=\frac{1}{-0.03142 }ln\left(\frac{0.03142}{P} - 0.0001485\right)+C[/tex]

Solving the ODE

[tex]\displaystyle \frac{1}{-0.03142 }ln\left(\frac{0.03142}{P} - 0.0001485\right)+C=t+A[/tex]

Taking exponentials and using a generic constant K

[tex]\displaystyle \frac{0.03142}{P} - 0.0001485=Ke^{-0.03142t}[/tex]

Solving for P

[tex]\displaystyle P =\frac{0.03142}{Ke^{-0.03142t}+0.0001485}[/tex]

Use the initial value t=0, P=3.9

[tex]\displaystyle 3.9 =\frac{0.03142}{Ke^{-0.03142(0)}+0.0001485}=\frac{0.03142}{K+0.0001485}[/tex]

We get the value of K

[tex]K=0.007908[/tex]

The final solution for P is

[tex]\displaystyle P =\frac{0.03142}{0.007908\cdot e^{-0.03142t}+0.0001485}[/tex]

(a) Compute P for the year 1930, t=1930-1790=140 years

[tex]P\approx 128\ million[/tex]

(b) For larger values of t we evaluate the limit value of P, making [tex]t=\infty[/tex]

[tex]\displaystyle P(limit) =\frac{0.03142}{0.007908\cdot e^{-0.03142(\infty)}+0.0001485}=\frac{0.03142}{0.0001485}=211.6[/tex]

The limiting population is 211.6 million