Answer : The initial reaction velocity [tex]V_o[/tex] would approach [tex]V_{max}[/tex]
Explanation :
According to Michaelis-Menten kinetics,
[tex]V_{o} = V_{max} \times [\frac{S}{(S + Km)}][/tex]
where,
S = substrate concentration = [tex]10.4 \times 10^{-6} M[/tex]
[tex]V_{max} = 6.8 \times 10^{-10} \mu mol/min[/tex]
[tex]K_{m} = 5.2 \times 10^{-6} M[/tex]
[tex]V_o[/tex] = initial reaction velocity = ?
Now put all the given values into the above formula, we get:
[tex]V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}][/tex]
[tex]V_{o} = 4.5 \times 10^{-10} \mu mol/min[/tex]
Therefore, the initial reaction velocity [tex]V_o[/tex] would approach [tex]V_{max}[/tex]