Select all the expressions that are equivalent to (2)^n+³
A. (4)^n+²
B. 4(2)^2+¹
C. 8(2)^n
D. 16(2)^n
E. (2)^2x+³
Please explain as well please

Respuesta :

Answer:

The expressions which equivalent to  [tex](2)^{n+3}[/tex] are:

[tex]4(2)^{n+1}[/tex]  ⇒ B

[tex]8(2)^{n}[/tex] ⇒ C

Step-by-step explanation:

Let us revise some rules of exponent

  • [tex]a^{m}[/tex] × [tex]a^{m}[/tex]  = [tex]a^{m+n}[/tex]
  • [tex](a^{m})^{n}[/tex] = [tex]a^{m*n}[/tex]

Now let us find the equivalent expressions of  [tex](2)^{n+3}[/tex]

A.

∵ 4 = 2 × 2

∴ 4 =  [tex]2^{2}[/tex]

∴  [tex](4)^{n+2}[/tex] =  [tex](2^{2})^{n+2}[/tex]

- By using the second rule above multiply 2 and (n + 2)

∵ 2(n + 2) = 2n + 4

∴  [tex](4)^{n+2}[/tex] =  [tex](2)^{2n+4}[/tex]  

B.

∵ 4 = 2 × 2

∴ 4 =  2²

∴  [tex]4(2)^{n+1}[/tex] = 2² ×  [tex](2)^{n+1}[/tex]

- By using the first rule rule add the exponents of 2

∵ 2 + n + 1 = n + 3

∴   [tex]4(2)^{n+1}[/tex] =  [tex](2)^{n+3}[/tex]

C.

∵ 8 = 2 × 2 × 2

∴ 8 =  2³

∴  [tex]8(2)^{n}[/tex] = 2³ ×  [tex](2)^{n}[/tex]

- By using the first rule rule add the exponents of 2

∵ 3 + n = n + 3

∴  [tex]8(2)^{n}[/tex] =  [tex](2)^{n+3}[/tex]

D.

∵ 16 = 2 × 2 × 2 × 2

∴ 16 = [tex]2^{4}[/tex]

∴  [tex]16(2)^{n}[/tex] = [tex]2^{4}[/tex]  ×  [tex](2)^{n}[/tex]

- By using the first rule rule add the exponents of 2

∵ 4 + n = n + 4

∴  [tex]16(2)^{n}[/tex] =  [tex](2)^{n+4}[/tex]

E.

[tex](2)^{2n+3}[/tex] is in its simplest form

The expressions which equivalent to  [tex](2)^{n+3}[/tex] are:

[tex]4(2)^{n+1}[/tex]  ⇒ B

[tex]8(2)^{n}[/tex] ⇒ C