Inthisexperiment,aspringforcewasusedtokeep moving object travelingin a circularpath.The size of a spring force should be proportional to the amount of stretch in the spring. Doesthisclaimagree qualitatively with the data in your five trials? Why or why not?

Respuesta :

Answer:

By calculation, it can be shown that;

K = [tex]\frac{F_{angular}}{2\times x\times c}[/tex]

Whereby for constant K, as  [tex]{F_{angular}}[/tex] increases,  x also increases.

Explanation:

The experiment set up consisted of the use of a spring force to maintain the object in  circular path.

The energy in the spring is given by

[tex]\frac{1}{2}\cdot k\cdot x^2[/tex].

Rotational kinetic energy = [tex]\frac{1}{2}[/tex]·I·ω²

Inertia,  I =  [tex]\frac{1}{2}[/tex]·m·r²

ω = [tex]\frac{v}{r}[/tex]

Substituting gives

Rotational kinetic energy =  [tex]\frac{1}{2}[/tex]·

=  [tex]\frac{1}{4}[/tex]·m· v²

Equating both equations gives

K = [tex]\frac{2\times m\times v^2}{4\times x^{2} }[/tex]  = [tex]\frac{1\times m\times v^2}{2\times x^{2} }[/tex]  

Within the proportionality limit, x ∝ r

therefore we can write x = c·r which gives

[tex]\frac{ m\times v^2}{2\times x\times c\times r }[/tex] = [tex]\frac{v^{2} }{r} \times\frac{m}{2\times x\times c}[/tex]

Since [tex]\frac{v^{2} }{r}[/tex] = angular acceleration, α, then

m× [tex]\frac{v^{2} }{r}[/tex] = Angular force

Therefore K = [tex]\frac{F_{angular}}{2\times x\times c}[/tex]

Therefore as Force, F increases, x also increases and the size of a spring force should be proportional to the amount of stretch in the spring.