Respuesta :
Answer:
[tex]v_A=(\frac{m_A-m_B}{m_A+m_B})u_A[/tex]
[tex]v_B=(\frac{2m_A}{m_A+m_B})u_A[/tex]
Explanation:
In an elastic collision, the total momentum of the system and the total kinetic energy of the system are conserved.
So:
- Conservation of momentum:
[tex]m_A u_A+m_B u_B = m_A v_A + m_B v_B[/tex] (1)
where
[tex]m_A, m_B[/tex] are the masses of cart A and B
[tex]u_A,u_B[/tex] are the initial velocities of cart A and B
[tex]v_A,v_B[/tex] are the final velocities of cart A and B
- Conservation of kinetic energy:
[tex]\frac{1}{2}m_A u_A^2+\frac{1}{2}m_B u_B^2= \frac{1}{2}m_A v_A^2 +\frac{1}{2} m_B v_B^2[/tex] (2)
From (1) we can write:
[tex]m_A (u_A-v_A)=m_B(v_B-u_B)\\\frac{m_A (u_A-v_A)}{m_B(v_B-u_B)}=1[/tex] (3)
From (2) we get:
[tex]m_A (u_A^2-v_A^2)=m_B(v_B^2-u_B^2)\\m_A(u_A-v_A)(u_A+v_A)=m_B(v_B-u_B)(v_B+u_B)\\\frac{m_A(u_A-v_A)}{m_B(v_B-u_B)}(u_A+v_A)=(v_B+u_B)[/tex] (4)
Substituting (3) into (4),
[tex]1\cdot (u_A+v_A)=(v_B+u_B)\\v_B=u_A+v_A-u_B[/tex] (5)
And substituting (5) into (1),
[tex]m_A(u_A-v_A)=m_B (u_A+v_A-2u_B)[/tex]
And now we can solve to find the final expressions:
[tex]v_A=(\frac{m_A-m_B}{m_A+m_B})u_A+(\frac{2m_B}{m_A+m_B})u_B[/tex]
[tex]v_B=(\frac{2m_A}{m_A+m_B})u_A+(\frac{m_B-m_A}{m_A+m_B})u_B[/tex]
But in this problem
[tex]u_B=0[/tex]
So the equations can be rewritten as
[tex]v_A=(\frac{m_A-m_B}{m_A+m_B})u_A[/tex]
[tex]v_B=(\frac{2m_A}{m_A+m_B})u_A[/tex]