Answer : The temperature of the mixture will be, 974.4 K
Explanation :
Using ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = Pressure of [tex]N_2[/tex] gas = 10 atm
V = Volume of gas = 20 L
n = number of moles [tex]N_2[/tex] = 2.5 mole
R = Gas constant = [tex]0.0821L.atm/mol.K[/tex]
T = Temperature of [tex]N_2[/tex] gas = ?
Now put all the given values in above equation, we get:
[tex]10atm\times 20L=2.5mole\times (0.0821L.atm/mol.K)\times T[/tex]
[tex]T=974.4K[/tex]
The temperature of the mixture will be same as the temperature of [tex]N_2[/tex] gas.
Therefore, the temperature of the mixture will be, 974.4 K