Respuesta :

Given:

[tex]m \angle A B D=96^{\circ}[/tex]

[tex]m \angle 2 =m \angle 1+ 26^{\circ}[/tex]

To find:

[tex]m \angle 1[/tex]

Solution:

[tex]m \angle DBC+ m \angle CBA = m \angle ABD[/tex]

[tex]m \angle 1+ m \angle 2 = m \angle ABD[/tex]

Substitute [tex]m \angle 2 =m \angle 1+ 26^{\circ}[/tex].

[tex]m \angle 1+ m \angle 1 + 26^\circ = 96^\circ[/tex]

[tex]2m \angle 1+ 26^\circ = 96^\circ[/tex]

Subtract 26° from both sides.

[tex]2m \angle 1+ 26^\circ -26^\circ = 96^\circ -26^\circ[/tex]

[tex]2m \angle 1 = 70^\circ[/tex]

Divide by 2 on both sides, we get

[tex]m \angle 1=35^{\circ}[/tex]

Therefore, m∠1 = 35°.

Answer:

35°

Step-by-step explanation:

Let angle 1 be x

Angle 2: x + 26

x + x + 26 = 96

2x = 70

x = 35