Respuesta :

Given:

θ = 60°

Opposite side of θ = 6

Adjacent side of θ = x

Hypotenuse = y

To find:

The value of x and y.

Solution:

Using basic trigonometric ratio formula:

[tex]$\tan\theta =\frac{\text{Opposite side of } \theta}{\text{Adjacent side of } \theta}[/tex]

[tex]$\tan60^\circ=\frac{6}{x}[/tex]

The value of tan 60° = √3

[tex]$\sqrt{3} =\frac{6}{x}[/tex]

Multiply by x on both sides.

[tex]$\sqrt{3} \times x=\frac{6}{x} \times x[/tex]

[tex]$\sqrt{3} \times x=6[/tex]

Divide by √3 on both sides, we get

[tex]$\frac{\sqrt{3} \times x}{\sqrt{3} } =\frac{6}{\sqrt{3} }[/tex]

[tex]x=2\sqrt{3}[/tex]

Using Pythagoras theorem:

[tex]\text{Hypotenuse}^2 = \text{Opposite}^2 + \text{Adjacent}^2[/tex]

[tex]y^2 = 6^2 +({2\sqrt {3}})^2[/tex]

[tex]y^2 = 36 +12[/tex]

[tex]y^2 = 48[/tex]

Taking square root on both sides, we get

[tex]y=4 \sqrt{3}[/tex]

Therefore, the exact values of x and y are [tex]x=2 \sqrt{3}, y=4 \sqrt{3}[/tex].