You want to create an 80% confidence interval for the average age of people who attend U of O football games. You take a sample of 100 attendees and find the average age to be 43.7 years old with a standard deviation of 7 years. Find the value of t* for this confidence interval. Do not round your answer. Write your answer in decimal form, not as a fraction or percent.

Respuesta :

Answer:

80% confidence interval for the average age of people who attend U of O football games is [42.795 , 44.604].

Step-by-step explanation:

We are given that a sample of 100 attendees and find the average age to be 43.7 years old with a standard deviation of 7 years.

So, the pivotal quantity for 80% confidence interval for the population average start up cost is given by;

          P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\mu[/tex] = sample average age = 43.7 years old

            [tex]\sigma[/tex] = sample standard deviation = 7 years

            n = sample of attendees = 100

            [tex]\mu[/tex] = population average age of people

So, 80% confidence interval for the average age of people, [tex]\mu[/tex] is ;

P(-1.2915 < [tex]t_9_9[/tex] < 1.2915) = 0.80

P(-1.2915 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.2915) = 0.80

P( [tex]-1.2915 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]1.2915 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.80

P( [tex]\bar X -1.2915 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X +1.2915 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.80

80% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X -1.2915 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X +1.2915 \times {\frac{s}{\sqrt{n} }[/tex] ]

                                                 = [ [tex]43.7 -1.2915 \times {\frac{7}{\sqrt{100} }[/tex] , [tex]43.7 +1.2915 \times {\frac{7}{\sqrt{100} }[/tex] ]

                                                 = [42.795 , 44.604]

Therefore, 80% confidence interval for the population average age of people who attend U of O football games is [42.795 , 44.604].