Which of the following statements must be true of this triangle?
A. PR + RQ = PO
B. PR + PQ = QR
C. PQ + QR - PR
D. None of the above are true.

Respuesta :

Answer:

[tex]PQ^2+QR^2=PR^2[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

we know that

In the right triangle PQR of the figure

Applying the Pythagorean Theorem

[tex]PR^2=PQ^2+QR^2[/tex]

Remember that the area of square is equal to

[tex]A=b^2[/tex]

where

b is the length side of the square

so

Area of square C

[tex]A_c=PR^2[/tex]

[tex]A_c=25\ units^2[/tex] ---> is given

so

[tex]PR^2=25\ units^2[/tex]

Area of square A

[tex]A_a=PQ^2[/tex]

[tex]A_a=9\ units^2[/tex] ---> is given

so

[tex]PQ^2=9\ units^2[/tex]

Area of square B

[tex]A_b=QR^2[/tex]

[tex]A_b=16\ units^2[/tex] ---> is given

so

[tex]QR^2=16\ units^2[/tex]

substitute the given values in the Pythagorean Theorem

[tex]PR^2=PQ^2+QR^2[/tex]

[tex]25=9+16[/tex]

[tex]25=25[/tex] ---> is true

The Pythagorean Theorem is satisfied  (PQR is a right triangle)

we have

[tex]PR^2=PQ^2+QR^2[/tex]

rearrange

[tex]PQ^2+QR^2=PR^2[/tex]

Ver imagen calculista