Respuesta :

Answer:

Option D, [tex]10x^4\sqrt{6} +x^3\sqrt{30x} -10x^4\sqrt{3} -x^3\sqrt{15x}[/tex]

Step-by-step explanation:

Step 1:  Multiply

[tex](\sqrt{10x^4} -x\sqrt{5x^2} )*(2\sqrt{15x^4} + \sqrt{3x^3})\\ (\sqrt{10 * x^2 * x^2} -x\sqrt{5 * x^2} ) * (2\sqrt{15 * x^2 * x^2} +\sqrt{3 * x^2 * x})\\(x^2\sqrt{10} -x^2\sqrt{5} )*(2x^2\sqrt{15} +x\sqrt{3x}) \\\\[/tex]

[tex](x^2\sqrt{10}*2x^2\sqrt{15} )+(x^2\sqrt{10}*x\sqrt{3x} ) + (-x^2\sqrt{5} *2x^2\sqrt{15}) + (-x^2\sqrt{5} *x\sqrt{3x}[/tex]

[tex](2x^4\sqrt{150} ) + (x^3\sqrt{30x}) + (-2x^4\sqrt{75}) + (-x^3\sqrt{15x} )[/tex]

[tex]2x^4\sqrt{5^2*6} + x^3\sqrt{30x} -2x^4\sqrt{5^2*3} -x^3\sqrt{15x}[/tex]

[tex]10x^4\sqrt{6} +x^3\sqrt{30x} -10x^4\sqrt{3} -x^3\sqrt{15x}[/tex]

Answer:  Option D, [tex]10x^4\sqrt{6} +x^3\sqrt{30x} -10x^4\sqrt{3} -x^3\sqrt{15x}[/tex]

Answer:

Option 4

Step-by-step explanation:

sqrt(10x⁴) = x²sqrt(10)

sqrt(5x²) = xsqrt(5)

sqrt(15x⁴) = x²sqrt(15)

sqrt(3x³) = xsqrt(3x)

First bracket: (sqrt(10) - sqrt(5))x²

-x²sqrt(5) × xsqrt(3x) = -x³sqrt(15x)