Solution and Explanation:
Trend-Adjusted Forecast(TAF) = 250
The initial estimate of trend is based on the net change of 30 for the three periods from 1 to 4, for an average of +10 units
Given data
Period Actual
1 212
2 221
3 227
4 242
5 260
6 263
7 277
8 281
9 292
α=.5 and β=.1
Initial Trend = [tex](242-212) / 3=[/tex] = 30/3= 10
[tex]\mathrm{Ft}+1=\alpha \mathrm{Dt}+(1-\underline{\alpha}) \mathrm{Ft}[/tex]
[tex]\mathrm{Tt}+1=\beta(\mathrm{Ft}+1-\mathrm{F} t)+(1-\beta) \mathrm{Tt}[/tex]
For period 5 Dt= 260 (Period 5 actual demand)
Tt= 10
Ft= 250(TAF)
[tex]\mathrm{Ft}+1=0.5 *(260)+(1-0.5) * 250=255[/tex]
[tex]\mathrm{Tt}+1=\beta(\mathrm{Ft}+1-\mathrm{F} t)+(1-\beta) \mathrm{Tt}[/tex]
[tex]=0.1(255-250)+(1-0.1) 10=0.5+9=9.5[/tex]
So TAF for period 6
[tex]=0.1(255-250)+(1-0.1) 10=0.5+9=9.5[/tex]