A line with gradient 2/3 passes through the midpoint of (5,6) and (1,10). find the equation of the line ​

Respuesta :

Answer:

[tex]y=\frac{2}{3}x+6[/tex]

Step-by-step explanation:

step 1

Find the midpoint of (5,6) and (1,10)

we know that

The formula to calculate the midpoint between two points is equal to

[tex]M(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

substitute the values

[tex]M(\frac{5+1}{2},\frac{6+10}{2})[/tex]

[tex]M(3,8)[/tex]

step 2

Find the equation of the line in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{2}{3}[/tex] ----> the gradient is the same that the slope

[tex]point\ (3,8)[/tex]

substitute

[tex]y-8=\frac{2}{3}(x-3)[/tex]

Convert to slope intercept form

isolate the variable y

[tex]y-8=\frac{2}{3}x-2[/tex]

[tex]y=\frac{2}{3}x-2+8[/tex]

[tex]y=\frac{2}{3}x+6[/tex]