Respuesta :

The solutions of the equation are [tex]x=\pm i, x=\pm \sqrt{5}i[/tex]

Explanation:

Given that the equation is [tex]x^{4}+6 x^{2}+5=0[/tex]

We need to determine the solutions of the equation.

Let us substitute [tex]x^{2} =u[/tex] and [tex]x^4=u^2[/tex]

Thus, the equation becomes,

[tex]u^{2}+6 u+5=0[/tex]

Factoring the equation, we get;

[tex](u+1)(u+5)=0[/tex]

      [tex]u=-1, u=-5[/tex]

Substituting back [tex]x^{2} =u[/tex] and solve for x.

First, we shall substitute [tex]u=-1[/tex]

Thus, we get;

[tex]x^{2} =-1[/tex]

[tex]x=\sqrt{-1}[/tex]

[tex]x=\pm i[/tex]

Similarly, substituting [tex]u=-5[/tex], we get;

[tex]x^{2} =-5[/tex]

[tex]x=\sqrt{-5}[/tex]

[tex]x=\pm \sqrt{5}i[/tex]

Thus, the solutions of the equation are [tex]x=\pm i, x=\pm \sqrt{5}i[/tex]