Respuesta :

Explanation:

In this case, we have the following expression:

[tex]log(3x+4) - 7 log(r^{0}) +6log(x)[/tex]

Remember that any number whose exponent is 0 equals 1, so:

[tex]r^{0}=1[/tex]

Then, we can write our expression as:

[tex]log(3x+4) - 7 log(1) +6log(x)[/tex]

We know that:

[tex]log(1)=0[/tex]

So our expression becomes:

[tex]log(3x+4) +6log(x) \\ \\ \\ By \ property: \\ \\ nlog(m)=log(m^n) \\ \\ \\ Then: \\ \\ log(3x+4) +log(x^6) \\ \\ \\ By \ property: \\ \\ log(mn)=log(m)+log(n) \\ \\ \\ So: \\ \\ log(3x+4) +log(x^6)=log[(3x+4)(x^6)]=\boxed{log(3x^7+4x^6)}[/tex]