The length of side AC¯¯¯¯¯¯ in ΔABC is 5 units.

Triangle A B C on a coordinate plane with coordinates A 1 comma 1, B 4 comma 1, and C 4 comma 5.

What is the perimeter of ΔABC?
12 units
13 units
15 units
16 units

The length of side AC in ΔABC is 5 units Triangle A B C on a coordinate plane with coordinates A 1 comma 1 B 4 comma 1 and C 4 comma 5 What is the perimeter of class=

Respuesta :

Answer:

The perimeter of ΔABC = 12 units

Step-by-step explanation:

From the given triangle ABC on a coordinate plane, we can observe that:

  • A is located at (1, 1)
  • B is located at (4, 1)
  • C is located at (4, 5)

The length of AB is the distance between A(1, 1) and B(4, 1)

so using the distance formula

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]\mathrm{The\:distance\:between\:}\left(1,\:1\right)\mathrm{\:and\:}\left(4,\:1\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(4-1\right)^2+\left(1-1\right)^2}[/tex]

[tex]=\sqrt{3^2+0}[/tex]

[tex]=\sqrt{3^2}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

[tex]=3[/tex]

  • So the length of AB = 3 units

similarly the length of BC is the distance between B(4, 1) and C(4, 5)  

[tex]\mathrm{The\:distance\:between\:}\left(4,\:1\right)\mathrm{\:and\:}\left(4,\:5\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(4-4\right)^2+\left(5-1\right)^2}[/tex]

[tex]=\sqrt{0+4^2}[/tex]

[tex]=\sqrt{4^2}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

[tex]=4[/tex]

  • So the length of BC = 4 units

  • As the length of of hypotenuse AC = 5 units

Therefore, the perimeter of the triangle ABC can be obtained using the formula:

P = AB + BC + AC

  =  3 + 4 + 5

  = 12 units

Therefore, the perimeter of ΔABC = 12 units