Respuesta :

The surface area of the cone is 9.42cm²

Explanation:

When a triangle with the interior angle as 30°-60°-90° is rotated then a cone is formed.

So, we need to find the surface area of the cone.

Surface area of a cone is πr ² + πrl

where,

r = radius of the cone

l = lateral height of the cone

tan (30°) = [tex]\frac{perpendicular}{base} =\frac{BC}{AB} =\frac{1}{\sqrt{3} }[/tex]

So,

BC = 1

AB = √3

AC = ?

(AC)² = (BC)² + (AB)²

(AC)² = (1)² + (√3)²

AC = 2

Lateral height, h = 2cm

Radius = BC = 1cm

Thus,

surface area of the cone = πr ² + πrl

                                         [tex]=\pi (1)^2 + \pi X 1 X 2\\\\=\pi + 2\pi \\\\=3\pi \\\\= 9.42 cm^2[/tex]

Therefore, surface area of the cone is 9.42cm²

Ver imagen thamimspartan
Ver imagen thamimspartan