Explain how solve 4^(x+3) = 7 using the change of base formula log base b of y equals log y over log b. Include the solution for x in your answer. Round your answer to the nearest thousandth.

Respuesta :

The required value of x will be -2.7569 .

Given expression,

[tex]4^{x+3} = 7[/tex].

Taking log on both sides we get,

[tex]\rm log\ (4)^{x+3} = log\ 7[/tex]

now applying the logarithmic property, we get

[tex](x+3)\rm log\ 4=log\ 7[/tex] ( [tex]\rm log\ x^m=m\ log\ x[/tex] )

[tex]x+3=\dfrac{\rm log\ 7}{\rm log\ 4}[/tex]

Since,

[tex]\rm\dfrac{ log\ m}{log\ n} =log\ m-log\ n[/tex]

So, [tex]x+3=\rm log\ 7-log\ 4[/tex]

[tex]x+3=0.84509-0.6020[/tex]

[tex]x+3=0.24309[/tex]

[tex]x=-2.75691[/tex]

The nearest thousandth value of x will be -2.7569.

For more details on log follow the link:

https://brainly.com/question/163125