Respuesta :
Answer:
Option a) 125 Superscript one-third x is correct
The equivalent expression to the given expression [tex]\sqrt[3]{125}^x[/tex] is [tex](125)^{\frac{1}{3}x}[/tex]
Step-by-step explanation:
Given that (RootIndex 3 StartRoot 125 EndRoot) Superscript x
Given expression can be written as
[tex]\sqrt[3]{125}^x[/tex]
To find the equivalent expression to the given expression :
[tex]\sqrt[3]{125}^x[/tex]
[tex]=((125)^{\frac{1}{3}})^x[/tex] ( by using the property [tex]\sqrt[x]{y}=y^{\frac{1}{x}}[/tex] )
[tex]=(125)^{\frac{1}{3}x}[/tex] ( by using the property [tex](a^m)^n=a^{mn}[/tex] )
[tex]\sqrt[3]{125}^x=(125)^{\frac{1}{3}x}[/tex]
Therefore the equivalent expression to the given expression [tex]\sqrt[3]{125}^x[/tex] is [tex](125)^{\frac{1}{3}x}[/tex]
Therefore the equivalent expression to the given expression is 125 Superscript one-third x
Therefore option a) 125 Superscript one-third x is correct.
Answer:
The answer is a on edge 125 Superscript one-third x
Step-by-step explanation: