is equivalent to (RootIndex 3 StartRoot 125 EndRoot) Superscript x?


125 Superscript one-third x

125 Superscript StartFraction 1 Over 3 x EndFraction

125 Superscript 3 x

125 Superscript (one-third) SuperSuperscript x

Respuesta :

Answer:

Option a) 125 Superscript one-third x is correct

The equivalent expression to the given expression [tex]\sqrt[3]{125}^x[/tex] is [tex](125)^{\frac{1}{3}x}[/tex]

Step-by-step explanation:

Given that (RootIndex 3 StartRoot 125 EndRoot) Superscript x

Given expression can be written as

[tex]\sqrt[3]{125}^x[/tex]

To find the equivalent expression to the given expression :

[tex]\sqrt[3]{125}^x[/tex]

[tex]=((125)^{\frac{1}{3}})^x[/tex] ( by using the property [tex]\sqrt[x]{y}=y^{\frac{1}{x}}[/tex] )

[tex]=(125)^{\frac{1}{3}x}[/tex] ( by using the property [tex](a^m)^n=a^{mn}[/tex] )

[tex]\sqrt[3]{125}^x=(125)^{\frac{1}{3}x}[/tex]

Therefore the equivalent expression to the given expression [tex]\sqrt[3]{125}^x[/tex] is [tex](125)^{\frac{1}{3}x}[/tex]  

Therefore the equivalent expression to the given expression is 125 Superscript one-third x

Therefore option a) 125 Superscript one-third x is correct.

Answer:

The answer is a on edge 125 Superscript one-third x

Step-by-step explanation: