Respuesta :
Answer:
[tex]v_{f} = \sqrt{2}\cdot v_{o}[/tex]
Explanation:
Let consider a car travelling at a speed [tex]v_{o}[/tex]. The ratio of final kinetic energy to initial kinetic energy:
[tex]\frac{\frac{1}{2}\cdot m \cdot v^{2}_{f} }{\frac{1}{2}\cdot m \cdot v^{2}_{o}} = 2[/tex]
[tex]\frac{v_{f}}{v_{o}} = \sqrt{2}[/tex]
The final speed is:
[tex]v_{f} = \sqrt{2}\cdot v_{o}[/tex]
Answer:
Explanation:
Assume:
Given:
Kinetic energy, E2 = 2 × E1
But E = 1/2 × M × v^2
Where,
M = Mass
v = velocity
E2 = 2 × E1
= 2 × 1/2 × M × v1^2
E2 = M × v2^2. ......1
E1 = 1/2 × M × v1^2. .......2
Equating equation 1 and 2 to find the final velocity, v2:
1/2 × M × v1^2 = M × v2^2
2 × v2^2 = v1^2
v2^2 = v1^2/2
v2 = v1/sqrt(2)