Respuesta :

Given that the regular polygon with 40 sides.

We need to determine the interior angle of the polygon.

Sum of the interior angle:

Sum of the interior angle can be determined using the formula,

[tex](n-2)\times 180^{\circ}[/tex]

where n is the number of side.

Substituting [tex]n=40[/tex] in the above formula, we get;

[tex](40-2)\times180^{\circ}[/tex]

Simplifying the values, we get;

[tex]38\times180^{\circ}=6840^{\circ}[/tex]

Thus, the sum of the interior angles is 6840°

Measure of each interior angle:

The measure of each interior angle can be determined using the formula,

[tex]\frac{(n-2)\times 180^{\circ}}{n}[/tex]

where n is the number of side.

Substituting [tex]n=40[/tex] in the above formula, we get;

[tex]\frac{(40-2)\times 180^{\circ}}{40}[/tex]

Simplifying the values, we get;

[tex]\frac{38\times 180^{\circ}}{40}=\frac{6480}{40}[/tex]

Dividing, we get,

[tex]n=171^{\circ}[/tex]

Thus, the measure of each interior angle is 171°