Respuesta :

Answer:

Shortest distance=|AC|/[tex]\sqrt[2]{2}[/tex].

Kindly find the attached for the figure

Step-by-step explanation:

This problem can be addressed using right-angled,

Let have right angle triangle with the shortest distance=hypotenuse;

hypotenuse=|AC|

using pythagoras theorem, we have

|AC|^2=|AB|^2+|BC|^2

Let |AB|=|BC|

|AC|^2=2|AB|^2

|AB|=|AC|/[tex]\sqrt[2]{2}[/tex]

Shortest distance=|AC|/[tex]\sqrt[2]{2}[/tex]

Ver imagen lukman4real