If the profit from the sale of x units of a product is P = 105x − 300 − x2, what level(s) of production will yield a profit of $2400? (Enter your answers as a comma-separated list.)

Respuesta :

Answer : The level(s) of production will be, (60, 45)

Explanation :

As we are given the expression:

[tex]p(x)=105x-300-x^2[/tex]

The production yield a profit of $2400. That means,

[tex]p(x)=\$ 2400[/tex]

[tex]2400=105x-300-x^2[/tex]

Rearranging the terms, we get:

[tex]x^2-105x+300+2400=0[/tex]

[tex]x^2-105x+2700=0[/tex]

The general quadratic equation is,

[tex]ax^2+bx+c=0[/tex]

Formula used :

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Now we have to solve the above equation and we get the value of 'x'.

[tex]x^2-105x+2700=0[/tex]

a = 1, b = -105, c = 2700

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-105)\pm \sqrt{(-105)^2-4\times 1\times (2700)}}{2\times 1}[/tex]

[tex]x=\frac{-(-105)+\sqrt{(-105)^2-4\times 1\times (2700)}}{2\times 1}[/tex]

x = 60

and,

[tex]x=\frac{-(-105)-\sqrt{(-105)^2-4\times 1\times (2700)}}{2\times 1}[/tex]

x = 45

The values of 'x' are 60 and 45.

Therefore, the level(s) of production will be, (60, 45)