Respuesta :

Answer:

[tex]m \angle \ DE\ F = 127\°[/tex]

Step-by-step explanation:

Given:

[tex]m \angle \ DE\ F = (6x+37)[/tex]

[tex]m \ arc \ FGD = (19-31)[/tex]

We need to find the m ∠ DEF.

Solution:

Now we can say that;

By inscribed angle theorem;

"The measure of the angle is twice the measure on the arc subtended by it."

so we get;

[tex]2 \ m \angle DE\ F = m\ arc \ FGD[/tex]

[tex]2(6x+37)= 19x-31[/tex]

Applying distributive property we get;

[tex]12x+74=19x-31[/tex]

Combining the like terms we get;

[tex]19x-12x=74+31\\\\7x = 105[/tex]

Dividing both side by 7 we get;

[tex]\frac{7x}{7}=\frac{105}{7}\\\\x=15[/tex]

[tex]m \angle \ DE\ F = (6x+37) = (6\times 15+37) = 90+37 =127\°[/tex]

Hence [tex]m \angle \ DE\ F = 127\°[/tex]

Answer: 127

Step-by-step explanation: