What would be the composition and ph of an ideal buffer prepared from lactic acid (ch3chohco2h), where the hydrogen atom highlighted in boldface is the acidic hydrogen atom? the ka value for lactic acid is 1.38 × 10−4.\?

Respuesta :

Answer:

[tex]P_H =2.86[/tex]

[tex]c=1.4\times 10^{-4}[/tex]

Explanation:

first write the equilibrium equaion ,

[tex]C_3H_6O_3[/tex]  ⇄ [tex]C_3H_5O_3^{-} +H^{+}[/tex]

assuming degree of dissociation [tex]\alpha[/tex] =1/10;

and initial concentraion of [tex]C_3H_6O_3[/tex] =c;

At equlibrium ;

concentration of [tex]C_3H_6O_3 = c-c\alpha[/tex]

[tex][C_3H_5O_3^{-} ]= c\alpha[/tex]

[tex][H^{+}] = c\alpha[/tex]

[tex]K_a = \frac{c\alpha \times c\alpha}{c-c\alpha}[/tex]

[tex]\alpha[/tex] is very small so [tex]1-\alpha[/tex] can be neglected

and equation is;

[tex]K_a = {c\alpha \times \alpha}[/tex]

[tex][H^{+}] = c\alpha[/tex] = [tex]\frac{K_a}{\alpha}[/tex]

[tex]P_H =- log[H^{+} ][/tex]

[tex]P_H =-logK_a + log\alpha[/tex]

[tex]K_a =1.38\times10^{-4}[/tex]

[tex]\alpha = \frac{1}{10}[/tex]

[tex]P_H= 3.86-1[/tex]

[tex]P_H =2.86[/tex]

composiion ;

[tex]c=\frac{1}{\alpha} \times [H^{+}][/tex]

[tex][H^{+}] =antilog(-P_H)[/tex]

[tex][H^{+} ] =0.0014[/tex]

[tex]c=0.0014\times \frac{1}{10}[/tex]

[tex]c=1.4\times 10^{-4}[/tex]