Which equation is the inverse of (x minus 4) squared minus two-thirds = 6y minus 12?

y = one-sixth x squared minus four-thirds x + StartFraction 43 Over 9 EndFraction

y = 4 plus-or-minus StartRoot 6 x minus StartFraction 34 Over 3 EndFraction EndRoot

y = negative 4 plus-or-minus StartRoot 6 x minus StartFraction 34 Over 3 EndFraction EndRoot

negative (x minus 4) squared minus two-thirds = negative 6 y + 12

Respuesta :

Answer:

The correct option is option B.

Step-by-step explanation:

The given function is

[tex](x - 4)^{2} - \frac{2}{3} = 6y - 12[/tex]

We can rearrange the function as

[tex](x - 4)^{2} - \frac{2}{3} = 6y - 12[/tex]

⇒ 3(x - 4)² - 2 = 18y - 36

⇒ 3(x - 4)² = 18y - 34

⇒ [tex](x - 4)^{2} = 6y - \frac{34}{3}[/tex]

⇒ [tex]x - 4 = \pm \sqrt{6y - \frac{34}{3}}[/tex]

⇒ [tex]x = 4 \pm \sqrt{6y - \frac{34}{3}}[/tex]

Therefore, the inverse function will be, [tex]y = 4 \pm \sqrt{6x - \frac{34}{3}}[/tex]

Therefore, the correct option is option B. (Answer)

The inverse of the equation [tex](x - 4)^2 - \frac 23 = 6y -12[/tex] is [tex]y = 4 + \sqrt{6x -\frac{34}3[/tex]

What is an inverse equation?

An inverse equation is the opposite of the original equation

The equation is given as:

[tex](x - 4)^2 - \frac 23 = 6y -12[/tex]

To determine the inverse, we start by swapping the positions of x and y

[tex](y - 4)^2 - \frac 23 = 6x -12[/tex]

Add 2/3 to both sides

[tex](y - 4)^2 = 6x -12 + \frac 23[/tex]

This gives

[tex](y - 4)^2 = 6x -\frac{34}3[/tex]

Take the square root of both sides

[tex]y - 4 = \sqrt{6x -\frac{34}3[/tex]

Add 4 to both sides

[tex]y = 4 + \sqrt{6x -\frac{34}3[/tex]

Hence, the inverse of the equation [tex](x - 4)^2 - \frac 23 = 6y -12[/tex] is [tex]y = 4 + \sqrt{6x -\frac{34}3[/tex]

Read more about inverse equations at:

https://brainly.com/question/9289171

Otras preguntas