Two solid steel shafts are fitted with flanges that are then connected by bolts as shown. the bolts are slightly undersized and permit a 1.58 rotation of one flange with respect to the other before the flanges begin to rotate as a single unit. knowing that g 5 77.2 gpa, determine the maximum shearing stress in each shaft when a torque of t of magnitude 500 n?m is applied to the flange indicated. 3.57 the torque t is applied to flange


b.

Respuesta :

Answer:

The maximum shear stress in shaft AB, [tex]T_{ABmax}[/tex] is 15 MPa

The maximum shear stress in shaft CD,  [tex]T_{CDmax}[/tex] is 45.9 MPa

Explanation:

The formula for a shaft polar moment of inertia, J is given by  

J = [tex]\pi \times \frac{D^4}{32} =\pi \times \frac{r^4}{2}[/tex]

Therefore, we have

[tex]J_{AB} = \pi \times \frac{D_{AB}^4}{32} =\pi \times \frac{r_{AB}^4}{2}[/tex]

Where:

D[tex]_{AB}[/tex] = Diameter of shaft AB = 30 mm = 0.03 m

r[tex]_{AB}[/tex] = Radius of shaft AB = 15 mm = 0.015 m

∴ [tex]J_{AB} = \pi \times \frac{0.03^4}{32} =\pi \times \frac{0.015^4}{2}[/tex] = 7.95 × 10⁻⁸ m⁴

and

[tex]J_{CD} = \pi \times \frac{D_{CD}^4}{32} =\pi \times \frac{r_{CD}^4}{2}[/tex]

Where:

D[tex]_{CD}[/tex] = Diameter of shaft CD = 36 mm = 0.036 m

r[tex]_{CD}[/tex] = Radius of shaft CD = 18 mm = 0.018 m

Therefore,

[tex]J_{CD} = \pi \times \frac{0.036^4}{32} =\pi \times \frac{0.018^4}{2}[/tex] = 1.65 × 10⁻⁷ m⁴

Given that the shaft AB and CD are rotated 1.58 ° relative to each other, we have;

1.58 °= [tex]1.58 \times \frac{2\pi }{360}[/tex] rad = 2.76 × 10⁻² rad.

That is [tex]\phi_r[/tex] = 2.76 × 10⁻² rad.

However  [tex]\phi_r = \phi_{C/D} - \phi_{B/A}[/tex]  

Where:

[tex]\phi_{B/A} = \frac{T_{AB}\cdot L_{AB}}{J_{AB} \cdot G}[/tex] and

[tex]\phi_{C/D} = \frac{T_{CD}\cdot L_{CD}}{J_{CD} \cdot G}[/tex]

[tex]T_{AB}[/tex] and [tex]T_{CD}[/tex]= Torque on shaft AB and CD respectively

[tex]T_{AB}[/tex]  = Required

[tex]T_{CD}[/tex]= 500 N·m

[tex]L_{AB}[/tex] and [tex]L_{CD}[/tex] = Length of shafts AB an CD respectively

[tex]L_{AB}[/tex]  = 600 mm = 0.6 m

[tex]L_{CD}[/tex] = 900 mm = 0.9 m

G = Shear modulus of the material = 77.2 GPa

Therefore;

[tex]\phi_r = \phi_{C/D} - \phi_{B/A}[/tex]  =[tex]\frac{T_{CD}\cdot L_{CD}}{J_{CD} \cdot G} -\frac{T_{AB}\cdot L_{AB}}{J_{AB} \cdot G}[/tex]

2.76 × 10⁻² rad =[tex]\frac{T_{CD}\cdot L_{CD}}{J_{CD} \cdot G} -\frac{T_{AB}\cdot L_{AB}}{J_{AB} \cdot G}[/tex]

=[tex]\frac{500\cdot 0.9}{1.65 \times 10^{-7} \cdot 77.2\times 10^9} -\frac{T_{AB}\cdot 0.6}{7.95\times 10^{-7} \cdot 77.2\times 10^9}[/tex]

Therefore;

T[tex]_{AB}[/tex] =  79.54 N.m

Where T = [tex]T_{AB}[/tex] + T[tex]_{CD}[/tex] =

Therefore T[tex]_{CD total }[/tex] = 500 - 79.54 = 420.46 N·m

τ[tex]_{max}[/tex] = [tex]\frac{T\times R}{J}[/tex]

[tex]\tau_{ABmax}[/tex] = [tex]\frac{T_{AB}\times R_{AB}}{J_{AB}}[/tex] =  [tex]\frac{79.54\times 0.015}{7.95\times 10^{-8}}[/tex] = 15 MPa

[tex]\tau_{CDmax}[/tex] = [tex]\frac{T_{CD}\times R_{CD}}{J_{CD}}[/tex] = [tex]\frac{420.46\times 0.018}{1.65\times 10^{-7}}[/tex] = 45.9 MPa