Answer:
[tex]44.4^o[/tex]
Explanation:
Use Snell`s law,
[tex]n_i\ sin\theta_i=n_r\sin\theta_r[/tex]
Here [tex]\theta_i=75^o[/tex] is the angle of incidence, [tex]\theta_r=?[/tex] angle of refraction,[tex]n_i=1, n_r=1.38[/tex] are the refractive indexes of first and second medium.
Substitute the given values, we get
[tex]1\times sin75^o=1.38\times sin\theta_r[/tex]
[tex]0.6999=sin\theta_r[/tex]
[tex]\theta_r=sin^-^1(0.6999)=44.4^o[/tex]
Thus, at [tex]44.4^o[/tex] angle the wave traveling once it enters the eye lens cover.