The resistance R produced by wiring resistors of R1, R2, and R3 ohms in parallel can be calculated from the formula If R1, R2, and R3 are measured to be 6 ohms, 7 ohms, and 8 ohms respectively, and if these measurements are accurate to within 0.05 ohms, estimate the maximum possible error in computing R.

Respuesta :

Answer:

0.71%

Explanation:

We are given that

[tex]R_1=6ohm[/tex]

[tex]R_2=7ohm[/tex]

[tex]R_3=8ohm[/tex]

Error in each resistor=0.05 ohm

[tex]R=R_1+R_2+R_3[/tex]

[tex]R=6+7+8=21 ohm[/tex]

[tex]Total error=3(0.05)=0.15[/tex] ohm

We have to find the maximum possible error in computing R.

Maximum possible error=[tex]\frac{error}{R}\times 100[/tex]

Substitute the values

Maximum possible error=[tex]\frac{0.15}{21}\times 100=0.71[/tex]%

Answer:

Explanation:

R1 = 6 ohm

R2 = 7 ohm

R3 = 8 ohm

error = 0.05 ohm

Let R is the equivalent resistance

[tex]\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}[/tex]    ... (1)

[tex]\frac{1}{R}=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}[/tex]

R = 2.3 ohm

The error is ΔR.

Differentiate the equation (1)

[tex]\frac{\Delta R }{R^2}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}+\frac{\Delta R_{3}}{R_{3}^{2}}[/tex]

[tex]\frac{\Delta R }{2.3^2}=\frac{0.05}{6}+\frac{0.05}{7}+\frac{0.05}{8}[/tex]

ΔR = 2.3 x 2.3 (8.33 + 71.4 + 6.25) x 10^-3

ΔR = 0.115

So, the maximum possible error is 0.115.