Answer: 12 ft/s
Step-by-step explanation:
We are told the following function models Spot's height at time [tex]t[/tex]:
[tex]h_{t}=-16t^{2}+20t[/tex] (1)
And we are asked to find Spot's average rate of ascent, this means its velocity [tex]V[/tex], which is calculated by:
[tex]V=\frac{h_{t=\frac{1}{2}}-h_{t=0}}{t_{f}-t_{o}}[/tex] (2)
Where:
[tex]h_{t=\frac{1}{2}[/tex] is the height of Spot at time [tex]t=\frac{1}{2}s[/tex]
[tex]h_{t=0[/tex] is the height of Spot at time [tex]t=0 s[/tex]
[tex]t_{f}=\frac{1}{2} s[/tex] is the final time
[tex]t_{o}=0 s[/tex] is the initial time
So, firstly we need to calculate [tex]h_{t=\frac{1}{2}[/tex] and [tex]h_{t=0[/tex]:
[tex]h_{t=\frac{1}{2}}=-16(\frac{1}{2})^{2}+20(\frac{1}{2})[/tex] (3)
[tex]h_{t=\frac{1}{2}}=6 ft[/tex] (4)
[tex]h_{t=0}=0 ft[/tex] (5)
Substituting these values in (2):
[tex]V=\frac{6 ft-0 ft}{\frac{1}{2} s-0 s}[/tex] (6)
Finally:
[tex]V=12 ft/s[/tex] This is Spot's average rate of ascent