Answer: 13 sheets of paper
Step-by-step explanation:
We are given the dimensions of the box and the wrap paper:
Box:
[tex](56 in)(8 in)(36 in)[/tex]
Warp paper:
[tex](26 in)(17 in)[/tex]
Now we need to find the surface area of the box and the area of the wrap paper:
Box:
[tex]surface_{1}=(56 in)(8 in)(2)=896 in^{2}[/tex]
[tex]surface_{2}=(8 in)(36 in)(2)=576 in^{2}[/tex]
[tex]surface_{3}=(56 in)(36 in)(2)=4032 in^{2}[/tex]
[tex]surface-area=896 in^{2}+576 in^{2}+4032 in^{2}=5504 in^{2}[/tex]
Warp paper:
[tex]area=(26 in)(17 in)=442 in^{2}[/tex]
Dividing the area of the box by the area of the paper:
[tex]\frac{surface-area}{area}=\frac{5504 in^{2}}{442 in^{2}}=12.45 \approx 13[/tex]
This means Angel's dad needs to purchase 13 sheets of wrapping paper.