contestada

The earth's radius is 6.37×106m; it rotates once every 24 hours. What is the earth's angular speed? What is the speed of a point on the equator? What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator? (Hint: what is the radius of the circle in which the point moves?)

Respuesta :

Answer:

a) w = 7.27 * 10^-5 rad/s

b) v1 = 463.1 m/s

c) v1 = 440.433 m/s

Explanation:

Given:-

- The radius of the earth,  R = 6.37 * 10 ^6 m

- The time period for 1 revolution T = 24 hrs

Find:

What is the earth's angular speed?

What is the speed of a point on the equator?

What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?

Solution:

- The angular speed w of the earth can be related with the Time period T of the earth revolution by:

                                  w = 2π / T

                                  w = 2π / 24*3600

                                  w = 7.27 * 10^-5 rad/s

- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.

                                 v1 = R*w

                                 v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)

                                 v1 = 463.1 m/s

- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.

                                 π/2  ........... s

                                 x     ............ 1/5 s

                                 x = π/2*5 = 18°    

- The radius of the earth R' at point where θ = 18° from the equator is:

                                R' = R*cos(18)

                                R' = (6.37 * 10 ^6)*cos(18)

                                R' = 6058230.0088 m

- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.

                              v2 = R'*w

                              v2 = (6058230.0088)*(7.27 * 10^-5)

                              v2 = 440.433 m/s

a) The earth's angular speed is, [tex]w = 7.27 * 10^{-5} rad/s[/tex]

b) The speed of a point on the equator, v₁ = 463.1 m/s

c) The speed of a point, v₁ = 440.433 m/s

Given:

The radius of the earth,  [tex]R = 6.37 * 10 ^6 m[/tex]

The time period for 1 revolution T = 24 hrs

Calculation of Angular speed:

The angular speed w of the earth can be related to the Time period T of the earth revolution by:

w = 2π / T

w = 2π / 24*3600

[tex]w = 7.27 * 10^{-5} rad/s[/tex]

The speed of the point on the equator v₁ can be determined from the linear and rotational motion kinematic relation.

v₁ = R*w

[tex]v_1 = (6.37 * 10 ^6)*(7.27 * 10^{-5})[/tex]

v₁ = 463.1 m/s

The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.

π/2  ........... s

x     ............ 1/5 s

x = π/2*5 = 18°    

The radius of the earth R' at a point where θ = 18° from the equator is:

R' = R*cos(18)

[tex]R' = (6.37 * 10 ^6)*cos(18)[/tex]

R' = 6058230.0088 m

The speed of the point where θ = 18° from the equator v₂ can be determined from the linear and rotational motion kinematic relation.

v₂ = R'*w

[tex]v_2 = (6058230.0088)*(7.27 * 10^{-5})[/tex]

v₂ = 440.433 m/s

Find more information about Angular speed here:

brainly.com/question/6860269