contestada

A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.1 g plastic bead with a charge of -5.6 nC is suspended between the two plates by the force of the electric field between them. What is the charge on the positive plate?

Respuesta :

Answer:

The charge on positive plate is [tex]-1.92 \times 10^{-7}[/tex] C

Explanation:

Given :

Diameter [tex]d = 0.12[/tex] m

Radius [tex]r = 0.06[/tex] m

Mass of bead [tex]= 1.1 \times 10^{-3}[/tex] Kg

Charge of bead [tex]q = -5.6 \times 10^{-9}[/tex] C

Electric field in capacitor is given by,

   [tex]E = \frac{Q}{\epsilon_{o} A}[/tex]

Where [tex]\epsilon _{o} = 8.85 \times 10^{-12}[/tex]

For finding electric field in terms of force,

   [tex]E = \frac{F}{q}[/tex]

But [tex]F = mg[/tex]

[tex]F = 1.1 \times 10^{-3 } \times 9.8[/tex]         ( [tex]g = 9.8 \frac{m}{s^{2} }[/tex] )

[tex]F = 10.78 \times 10^{-3}[/tex] N

So electric field, [tex]E = \frac{10.78 \times 10^{-3} }{-5.6 \times 10^{-9} }[/tex]

[tex]E =- 1.92 \times 10^{6}[/tex] [tex]\frac{N}{C}[/tex]

Now charge on positive plate is,

[tex]Q = E \epsilon _{o} A[/tex]

[tex]Q = -1.92 \times 10^{6} \times 8.85 \times 10^{-12} \times \pi (0.06)^{2}[/tex]

[tex]Q =- 1.92 \times 10^{-7}[/tex] C

Therefore, the charge on positive plate is [tex]-1.92 \times 10^{-7}[/tex] C