Respuesta :

Answer:

1.1 M

Explanation:

The dissociation of [tex]AgCl_{(s)}[/tex] is as follows:

[tex]AgCl \leftrightharpoons Ag^+_{(aq)}+Cl^-_{(aq)}[/tex]

Given Value for [tex]K_{sp} = 1.77*10^{-10}[/tex]

The equation for the reaction for the formation of complex ion [tex]Ag(NH_3)^+_2[/tex] is :

[tex]Ag^+_{(aq)} + 2NH_3_{(aq)} \rightleftharpoons Ag(NH_3)_2^+_{(aq)}[/tex]

The value of [tex]K_f = 1.6*10^7[/tex]

If we combine both equation and find the overall equilibrium constant will be:

[tex]AgCl \leftrightharpoons Ag^+_{(aq)}+Cl^-_{(aq)}[/tex]

[tex]Ag^+_{(aq)} + 2NH_3_{(aq)} \rightleftharpoons Ag(NH_3)_2^+_{(aq)}[/tex]

                                                                                                     

[tex]AgCl_{(s)}+2NH_3_{(aq)} \rightleftharpoons Ag(NH_3)_2^+_{(aq)} + Cl^-_{(aq)}[/tex]

                                 [tex]K = (1.77*10^{-10})(1.6*10^7)[/tex]

                                  [tex]K = 0.00283[/tex]

If [tex][NH_3][/tex] = x M

The solubility of  [tex]AgCl_{(s)}[/tex] in the [tex]NH_3[/tex] solution will be:

[tex]x = 743*10^{-3}g * \frac{mol AgCl}{143.32g}*\frac{1}{0.1000L}[/tex]

[tex]x = 0.0518 M[/tex]

Constructing an ICE Table; we have :

                             [tex]AgCl_{(s)} + 2 NH_3{(aq)} \rightleftharpoons Ag(NH_3)_2^+_{(aq)} + Cl^-_{(aq)}[/tex]

Initial  (M)                                     x                   0                      0

Change  (M)                       -2 (0.0518)      + 0.0518          + 0.0518

Equilibrium (M)                    x - 0.1156          0.0518             0.0518

Equilibrium constant;

(K) = [tex]\frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2}[/tex]

[tex]0.00283 = \frac{(0.0518)^2}{(x-0.1156)^2}[/tex]

[tex]0.00283 = (\frac{0.0518}{x-0.1156})^2[/tex]

[tex]x = 0.1156 + \sqrt{\frac{0.0518^2}{0.00283} }[/tex]

x = [NH₃] =  1.089 M

[NH₃] ≅ 1.1 M