Answer: [tex]135 \°[/tex]
Step-by-step explanation:
If we model the clock as a circumference, we will be able to see that a complete turn (the whole circumference) represents [tex]360\°[/tex], hence:
[tex]1 turn=360\°[/tex]
Now we have to find the equivalence between [tex]\frac{1}{4} turn[/tex] and [tex]\frac{1}{8} turn[/tex] and degrees. So, in order to do this, we can make a Rule of Three:
For [tex]\frac{1}{4} turn[/tex]:
[tex]1 turn----360\°[/tex]
[tex]\frac{1}{4} turn----?[/tex]
[tex]?=\frac{(\frac{1}{4} turn)(360\°)}{1 turn}[/tex]
[tex]?=90\°[/tex]
For [tex]\frac{1}{8} turn[/tex]:
[tex]1 turn----360\°[/tex]
[tex]\frac{1}{8} turn----??[/tex]
[tex]??=\frac{(\frac{1}{8} turn)(360\°)}{1 turn}[/tex]
[tex]??=45\°[/tex]
Adding both angles:
[tex]90\°+45\°=135 \°[/tex]