Respuesta :

Step-by-step explanation:

Given

[tex]y=x^2-2x-3[/tex]

Putting x = -2 in the function

[tex]y=x^2-2x-3[/tex]

[tex]y=\left(-2\right)^2-2\left(-2\right)-3[/tex]

  = 4 + 4 - 3

  = 5

(x, y) = (-2, 5)

Putting x = -1 in the function

[tex]y=x^2-2x-3[/tex]

[tex]y=\left(-1\right)^2-2\left(-1\right)-3[/tex]

  = 1 + 2 - 3

  = 0

(x, y) = (-1, 0)

Putting x = 0 in the function

[tex]y=\left(0\right)^2-2\left(0\right)-3[/tex]

   = 0 - 0 -3

   = -3

(x, y) = (0, -3)

Putting x = 1 in the function

[tex]y=\left(1\right)^2-2\left(1\right)-3[/tex]

   = 1 - 2 - 3

   = -4

(x, y) = (1, -4)

Putting x = 2 in the function

[tex]y=\left(2\right)^2-2\left(2\right)-3[/tex]

   = 4 - 4 - 3

   = -3

(x, y) = (2, -3)

Putting x = 3 in the function

[tex]y=\left(3\right)^2-2\left(3\right)-3[/tex]

  = 9 - 6 - 3

  = 0

(x, y) = (3, 0)

Putting x = 4 in the function

[tex]y=\left(4\right)^2-2\left(4\right)-3[/tex]

  = 16 - 8 - 3

  = 5

(x, y) = (4, 5)

Therefore, completing the table:

x                    y

-2                   5

-1                    0

0                   -3

2                   -4

3                    0

4                    5