The square ABCD has side length 20cm.
E is the midpoint.

Answer:
22.4 cm
Step-by-step explanation:
AB = 20 cm, BE = (1/2) * 20 cm = 10 cm
By pythagorous theorem,
AE = [tex]\sqrt{20^{2} + 10^{2}}[/tex] cm = [tex]10[/tex][tex]\sqrt{3}[/tex] cm = 22.4 cm
The length of AE is 22.36 cm
Step-by-step explanation:
Given,
In the fig: AB = 20 cm
E is the mid point of BC.
So, BE = 10 cm
To find the length of AD
Here,
ΔABE is a right angle triangle.
So,
[tex]AB^{2} +BE^{2} =AE^{2}[/tex]
Now, putting the values of AB and BE we get,
[tex]20^{2} +10^{2} =AE^{2}[/tex]
or, [tex]AE^{2}[/tex] = 400+100
or, AE = [tex]\sqrt{500}[/tex] = 10[tex]\sqrt{5}[/tex]
= 10×2.236 = 22.36 (approx)