Respuesta :

Answer:

22.4 cm

Step-by-step explanation:

AB = 20 cm, BE = (1/2) * 20 cm = 10 cm

By pythagorous theorem,

AE = [tex]\sqrt{20^{2} + 10^{2}}[/tex] cm = [tex]10[/tex][tex]\sqrt{3}[/tex] cm = 22.4 cm

The length of AE is 22.36 cm

Step-by-step explanation:

Given,

In the fig: AB = 20 cm

E is the mid point of BC.

So, BE = 10 cm

To find the length of AD

Here,

ΔABE is a right angle triangle.

So,

[tex]AB^{2} +BE^{2} =AE^{2}[/tex]

Now, putting the values of AB and BE we get,

[tex]20^{2} +10^{2} =AE^{2}[/tex]

or, [tex]AE^{2}[/tex] = 400+100

or, AE = [tex]\sqrt{500}[/tex] = 10[tex]\sqrt{5}[/tex]

= 10×2.236 = 22.36 (approx)