The volume of an ideal gas is increased from 0.61 m3 to 3.9 m3 while maintaining a constant pressure of 970 Pa (1 Pa = 1 N/m2). If the initial temperature of the gas is 65 K, (a) What is the final temperature of the gas?

Respuesta :

Answer:

Final Temperature of the gas =  416K

Step-by-step explanation:

Using the Charles Law;

V₁/T₁ = V₂/T₂

V₁ = 0.61m³, V₂=3.9m³, T₁= 65K, T₂ = ?

T₂ = V₂T₁/V₁ = (3.9 x 65)/0.61 = 415.57377K ≅ 416K

Answer:

416K

Step-by-step explanation:

Given:

Initial volume [tex]V_{1}[/tex]= 0.61 m^3 => 610L

Final volume [tex]V_{2}[/tex]= 3.9 m^3 => 3900L

Initial temperature [tex]T_{1}[/tex] = 65 K

Final temperature [tex]T_{2}[/tex]=?

Charles law states that the volume of an ideal gas at constant pressure is directly proportional to the absolute temperature.

Therefore,

[tex]V_{1}[/tex] / [tex]T_{1}[/tex] = [tex]V_{2}[/tex] / [tex]T_{2}[/tex]

610/ 65 = 3900 / [tex]T_{2}[/tex]

[tex]T_{2}[/tex] = (3900 x 65) / 610

[tex]T_{2}[/tex]=  415.5 K ≈ 416K

The final temperature of the gas is 416K