A chemist titrates 90.0 mL of a 0.5870 M acetic acid (HCH3CO2) solution with 0.4794M NaOH solution at 25 °C. Calculate the pH at equivalence. The p Kg of acetic acid is 4.76. Round your answer to 2 decimal places.

Respuesta :

Answer : The pH at equivalence is, 9.21

Explanation : Given,

Concentration of [tex]HCH_3CO_2[/tex] = 0.5870 M

Volume of [tex]HCH_3CO_2[/tex] = 90.0 mL = 0.09 L (1 L = 1000 mL)

First we have to calculate the moles of [tex]HCH_3CO_2[/tex]

[tex]\text{Moles of }HCH_3CO_2=\text{Concentration of }HCH_3CO_2\times \text{Volume of }HCH_3CO_2[/tex]

[tex]\text{Moles of }HCH_3CO_2=0.5870M\times 0.09L=0.0528mol[/tex]

As we known that at equivalent point, the moles of [tex]HCH_3CO_2[/tex] and NaOH are equal.

So, Moles of NaOH = Moles of [tex]HCH_3CO_2[/tex] = 0.0528 mol

Now we have to calculate the volume of NaOH.

[tex]\text{Volume of }NaOH=\frac{\text{Moles of }NaOH}{\text{Concentration of }NaOH}[/tex]

[tex]\text{Volume of }NaOH=\frac{0.0528mol}{0.4794M}[/tex]

[tex]\text{Volume of }NaOH=0.0253L[/tex]

Total volume of solution = 0.09 L + 0.0253 L = 0.1153 L

Now we have to calculate the concentration of KCN.

The balanced equilibrium reaction will be:

[tex]HCH_3CO_2+NaOH\rightleftharpoons CH_3CO_2Na+H_2O[/tex]

Moles of [tex]CH_3CO_2Na[/tex] = 0.0528 mol

[tex]\text{Concentration of }CH_3CO_2Na=\frac{0.0528mol}{0.1153L}=0.458M[/tex]

At equivalent point,

[tex]pH=\frac{1}{2}[pK_w+pK_a+\log C][/tex]

Given:

[tex]pK_w=14\\\\pK_a=4.76\\\\C=0.458M[/tex]

Now put all the given values in the above expression, we get:

[tex]pH=\frac{1}{2}[14+4.76+\log (0.458)][/tex]

[tex]pH=9.21[/tex]

Therefore, the pH at equivalence is, 9.21