Find the value of x in the triangle shown below

Answer:
x = 12
Step-by-step explanation:
Using the Pythagorean theorem where c = 13, and b = 5, we get (a = x):
[tex]a^2 + 5^2 = 13^2[/tex]
Solving for a:
[tex]a^2 = 13^2-5^2[/tex]
[tex]a =\sqrt{13^2-5^2} = \sqrt{144}=12[/tex]
Answer:
x=12
Step-by-step explanation:
The given triangle is a right angled triangle, where the base and the height are given.
The third side can be find by using the Pythagorean Theorem, i.e
[tex](Hypotenuse)^2=(Perpendicular)^2+(base)^2[/tex]
Hypotenuse= 13
Perpendicular= 5
Base= x
[tex]13^2=5^2+x^2[/tex]
[tex]169=25+x^2\\\\x^2=169-25\\\\x^2=144\\\\x=12[/tex]
The Value of 'x' is 12