Answer:
a) (σ/x)=f((μ)/(ρUx)) dimensionless form
b) Re=212467.5
Explanation:
a) There are 5 parameters: σ, U, ρ, μ, x, thus n=5. M, L, T are primary variables (m=3). The numbers of variables are 3 (r=3). According to Buckingham n-m(5-3=2) given by π1 and π2. The dimensions of parameters are:
σ=L
U=LT^1
ρ=ML^-3
μ=ML^-1T^-1
x=L
π1=ρ^aU^bx^cσ=(ML^-3)^a(LT^-1)^b(L^c)L=M^0L^0T^0
if we equalize the coefficients on both sides of the equation:
M:a=0
T:-b=0
L:-3a+b+c+1=0
c=-1
π1=ρ^0U^0x^-1σ
π1=σ/x=L/L=1
π2=ρ^dU^ex^fμ=(ML^-3)^d(LT^-1)^e(L^f)(ML^-1T^-1)=M^0L^0T^0
if we equalize the coefficients on both sides of the equation:
M:d+1=0, d=-1
T:-e-1=0, e=-1
L:-3d+e+f-1=0, f=-1
π2=ρ^-1U^-1x^-1μ
π2=(μ)/(ρUx)=1
The realation is:
π1=f(π2)
dimensionless form is (σ/x)=f((μ)/(ρUx))
b) The variables are expressed in a diamensionless form that is named Reynold`s number. Replacing values:
Re=(ρUx)/μ=(225*0.133*0.142)/(0.2x10^-4)=212467.5